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Abstract
Over the last decade, differential privacy has achieved widespread
adoption within the privacy community. Moreover, it has attracted
significant attention from the verification community, resulting in
several successful tools for formally proving differential privacy.
Although their technical approaches vary greatly, all existing tools
rely on reasoning principles derived from the composition theorem
of differential privacy. While this suffices to verify most common
private algorithms, there are several important algorithms whose
privacy analysis does not rely solely on the composition theorem.
Their proofs are significantly more complex, and are currently
beyond the reach of verification tools.

In this paper, we develop compositional methods for formally
verifying differential privacy for algorithms whose analysis goes
beyond the composition theorem. Our methods are based on the
observation that differential privacy has deep connections with a
generalization of probabilistic couplings, an established mathemat-
ical tool for reasoning about stochastic processes. Even when the
composition theorem is not helpful, we can often prove privacy by a
coupling argument.

We demonstrate our methods on two algorithms: the Exponential
mechanism and the Above Threshold algorithm, the critical com-
ponent of the famous Sparse Vector algorithm. We verify these
examples in a relational program logic apRHL+, which can con-
struct approximate couplings. This logic extends the existing apRHL
logic with more general rules for the Laplace mechanism and the
one-sided Laplace mechanism, and new structural rules enabling
pointwise reasoning about privacy; all the rules are inspired by the
connection with coupling. While our paper is presented from a for-
mal verification perspective, we believe that its main insight is of
independent interest for the differential privacy community.

1. Introduction
Differential privacy is a rigorous definition of statistical privacy pro-
posed by Dwork, McSherry, Nissim and Smith [12], and considered
to be the gold standard for privacy-preserving computations. Most
differentially private computations are built from two fundamental
tools: private primitives and composition theorems . However, there
are several important examples whose privacy proofs go beyond
these tools, for instance:

• The Above Threshold algorithm, which takes a list of numerical
queries as input and privately outputs the first query whose
answer is above a certain threshold. Above Threshold is the
critical component of the Sparse Vector technique. (See, e.g.,
Dwork and Roth [11].)
• The Report-noisy-max algorithm, which takes a list of numerical

queries as input and privately selects the query with the highest
answer. (See, e.g., Dwork and Roth [11].)
• The Exponential mechanism [16], which privately returns the

element of a (possibly non-numeric) range with the highest

score; this algorithm can be implemented as a variant of the
Report-noisy-max algorithm with a different noise distribution.

Unfortunately, existing pen-and-paper proofs of these algorithms
use ad hoc manipulations of probabilities, and as a consequence are
difficult to understand and error-prone.

This raises a natural question: can we develop compositional
proof methods for verifying differential privacy of these algorithms,
even though their proofs appear non-compositional? Surprisingly,
the answer is yes. Our method builds on two key insights.

1. A connection between probabilistic liftings and probabilistic
couplings [6]. Although the two concepts are tightly connected,
their relationship has been little explored.

2. A view of differential privacy as a form of approximate proba-
bilistic liftings [2, 4], a generalization of probabilistic liftings
used in probabilistic process algebra [13].

We elaborate on these points, and then present our contributions.

Probabilistic liftings and couplings
Relation lifting is a well-studied construction in mathematics and
computer science. Abstractly, relation lifting transforms relations
R ⊆ A×B into relations R] ⊆ TA× TB, where T is a functor
over sets [1]. Relation lifting satisfies a type of composition, so it is
a natural foundation for compositional proof methods.

Relation lifting has historically been an important tool in the
study of probabilistic systems. For example, probabilistic lifting
specializes the notion of relation lifting for the probability monad,
and appears in standard definitions of probabilistic bisimulation.
Over the last 25 years, researchers have developed a wide variety of
tools for reasoning about probabilistic liftings, explored applications
in numerous areas including security and biology, and uncovered
deep connections with the Kantorovich metric and the theory of
optimal transport [10].

While research in this area has traditionally focused on prob-
abilistic liftings for partial equivalence relations, recent works in-
vestigate liftings for more general relations. Applications include
formalizing reduction-based cryptographic proofs [3], and modeling
stochastic dominance and convergence of probabilistic processes [6].
Seeking to explain the power of liftings, Barthe et al. [6] establish
a tight connection between probabilistic liftings and probabilistic
couplings, a basic tool in probability theory [15, 17]. Roughly, a
probabilistic coupling places two distributions in the same prob-
abilistic space, by exhibiting a suitable witness distribution over
pairs. Not only does this observation open new avenues for apply-
ing probabilistic liftings, it offers an opportunity to revisit existing
applications from a fresh perspective.

Differential privacy via approximate probabilistic liftings
Relational program logics [2, 4] and relational refinement type
systems [7] are the most flexible techniques known for reasoning
formally about differentially private computations. Their expressive
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power stems from their use of approximate probabilistic liftings, a
generalization of probabilistic liftings based on a notion of distance
between distributions; differential privacy is a consequence of a
particular form of approximate lifting.

These approaches have successfully verified differential privacy
for many algorithms. However, they are unsuccessful when privacy
does not follow from standard tools and composition properties. In
fact, the present authors had long believed that the verification of
such examples was beyond the capabilities of lifting-based methods.

Contributions
In this paper, we propose the first formal analysis of differentially
private algorithms whose proof does not (exclusively) rely on the ba-
sic tools of differential privacy. We make three broad contributions.

New proof principles for approximate liftings We take inspira-
tion from the connection between liftings and coupling to develop
new proof principles for approximate liftings.

First, we introduce a principle for decomposing proofs of differ-
ential privacy “pointwise”, supporting a common pattern of proving
privacy separately for each possible output value. This principle is
used in pen-and-paper proofs, but is new to formal approaches.

Second, we provide new proof principles for the Laplace mech-
anism. Informally speaking, existing proof principles capture the
intuition that different inputs can be made to “look equal” by the
Laplace mechanism, provided that one pays sufficient privacy. Our
first new proof principle for the Laplace mechanism is dual, and
captures the idea that equal inputs can be made to look arbitrarily dif-
ferent by the Laplace mechanism, provided that one pays sufficient
privacy. Our second new proof principle for the Laplace mechanism
states that if we add the same noise in two runs of the Laplace
mechanism, the distance between the two values is preserved and
there is no privacy cost. As far as we know, these proof principles
are new to the differential privacy literature, and provide the key to
proving examples such as Sparse Vector using compositional proof
methods.

We also propose approximate probabilistic liftings for the one-
sided Laplace mechanism, which can be used to implement the
Exponential mechanism, but has been little-studied in the differ-
ential privacy literature. The one-sided Laplace mechanism nicely
illustrates the benefits of our approach: although it is not differen-
tially private, its properties can be captured formally by approximate
probabilistic liftings. These properties can be combined to show pri-
vacy for a larger program. These discussions are deferred to the
extended version.

An extended probabilistic relational program logic To demon-
strate our techniques, we take the relational program logic apRHL [4]
as our starting point. Conceived as a probabilistic variant of Ben-
ton’s relational Hoare logic [9], apRHL has been used to verify
differential privacy for examples using the standard composition
theorems. Most importantly, the semantics of apRHL is in terms of
approximate liftings. We introduce new proof rules representing our
new proof principles, and call the resulting logic apRHL+.

New privacy proofs While the extensions amount to just a handful
of rules, they significantly increase the power of apRHL: We provide
the first formal verification of two algorithms whose privacy proof
use tools beyond the composition theorems.

• The Exponential mechanism. The standard private algorithm
when the output is non-numeric, this construction is typically
taken as a primitive in systems verifying privacy. In contrast, we
prove its privacy within our logic.
• The Sparse Vector algorithm. Perhaps the most famous example

not covered by existing techniques, the proof of this mechanism

is quite involved; some of its variants are not provably private.
We also prove the privacy of its core subroutine in our logic.

The proofs are based on coupling ideas, which avoid reasoning about
probabilities explicitly. As a consequence, proofs are clean, concise,
and, we believe, appealing to researchers from both the differential
privacy and the formal verification communities.

We have formalized the proofs of these algorithms in an experi-
mental branch of the EasyCrypt proof assistant supporting approxi-
mate probabilistic liftings. An extended version of this paper [8] is
available at http://arxiv.org/abs/1601.05047.

2. Generalized probabilistic liftings
To verify advanced algorithms like AboveT, we will leverage the
power of approximate probabilistic liftings. In a sentence, our proofs
will replace the sequential composition theorem of differential
privacy—which is not strong enough to verify our target examples—
with the more general composition principle of liftings. This section
reviews existing notions of (approximate) probabilistic liftings and
introduces proof principles for establishing their existence. Most
of these proof principles are new, including those for equality
(Proposition 2), differential privacy (Proposition 6), the Laplace
mechanism (Propositions 8 and 9), and the one-sided Laplace
mechanism .

2.1 Probabilistic couplings and liftings
Probabilistic couplings and liftings are standard tools in probability
theory, and semantics and verification, respectively. We present their
definitions to highlight their similarities before discussing some
useful consequences.

Definition 1 (Coupling). There is a coupling between two sub-
distributions µ1 ∈ Distr(B1) and µ2 ∈ Distr(B2) if there exists
a sub-distribution (called the witness) µ ∈ Distr(B1 × B2) s.t.
π1(µ) = µ1 and π2(µ) = µ2.

Probabilistic liftings are a special class of couplings.

Definition 2 (Lifting). Two sub-distributions µ1 ∈ Distr(B1)
and µ2 ∈ Distr(B2) are related by the (probabilistic) lifting
of Ψ ⊆ B1 × B2, written µ1Ψ]µ2, if there exists a coupling
µ ∈ Distr(B1 ×B2) of µ1 and µ2 such that supp(µ) ⊆ Ψ.

Probabilistic liftings have many useful consequences. For exam-
ple, µ1 =] µ2 holds exactly when the sub-distributions µ1 and µ2

are equal. Less trivially, liftings can bound the probability of one
event by the probability of another event. This observation is useful
for formalizing reduction-based cryptographic proofs.

Proposition 1 (Barthe et al. [3]). Let E1 ⊆ B1, E2 ⊆ B2,
µ1 ∈ Distr(B1) and µ2 ∈ Distr(B2). Define

Ψ = {(x1, x2) ∈ B1 ×B2 | x1 ∈ E1 ⇒ x2 ∈ E2}.

If µ1Ψ]µ2, then

Pr
x1←µ1

[x1 ∈ E1] ≤ Pr
x2←µ2

[x2 ∈ E2].

One key observation for our approach is that this result can also
be used to prove equality between distributions in a pointwise style.

Proposition 2 (Equality by pointwise lifting).
• Let µ1, µ2 ∈ SDistr(B). For every b ∈ B, define

Ψb = {(x1, x2) ∈ B ×B | x1 = b⇒ x2 = b}.

If µ1 Ψ]
b µ2 for all b ∈ B, then µ1 = µ2.

• Let µ1, µ2 ∈ Distr(B). For every b ∈ B, define

Ψb = {(x1, x2) ∈ B ×B | x1 = b⇔ x2 = b}.
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If µ1 Ψ]
b µ2 for all b ∈ B, then µ1 = µ2.

2.2 Approximate liftings
It has previously been shown that differential privacy follows from
an approximate version of liftings [4]. Our presentation follows
subsequent refinements by Barthe and Olmedo [2]. We start by
defining a notion of distance between sub-distributions.

Definition 3 (Barthe et al. [4]). Let ε ≥ 0. The ε-DP divergence
∆ε(µ1, µ2) between two sub-distributions µ1 ∈ Distr(B) and
µ2 ∈ Distr(B) is defined as

sup
E⊆B

(
Pr

x←µ1

[x ∈ E]− exp(ε) Pr
x←µ2

[x ∈ E]

)
The following proposition relates ε-DP divergence with (ε, δ)-

differential privacy.

Proposition 3 (Barthe et al. [4]). A probabilistic computation
M : A → Distr(B) is (ε, δ)-differentially private w.r.t. an
adjacency relation Φ iff

∆ε(M(a),M(a′)) ≤ δ
for every two adjacent inputs a and a′ (i.e. such that a Φ a′).

We can use DP-divergence to define an approximate version of
probabilistic lifting, called (ε, δ)-lifting. We adopt the definition
by Barthe and Olmedo [2], which extends to a general class of
distances called f -divergences.

Definition 4 ((ε, δ)-lifting). Two sub-distributions µ1 ∈ Distr(B1)
and µ2 ∈ Distr(B2) are related by the (ε, δ)-lifting of Ψ ⊆
B1 × B2, written µ1Ψ](ε,δ)µ2, if there exist two witness sub-
distributions µL ∈ Distr(B1 ×B2) and µR ∈ Distr(B1 ×B2)
such that

1. π1(µL) = µ1 and π2(µR) = µ2;
2. supp(µL) ⊆ Ψ and supp(µR) ⊆ Ψ; and
3. ∆ε(µL, µR) ≤ δ.

It is relatively easy to see that two sub-distributions µ1 and µ2

are related by =](ε,δ) iff ∆ε(µ1, µ2) ≤ δ. Therefore, a probabilistic
computation M : A → Distr(B) is (ε, δ)-differentially private
w.r.t. an adjacency relation Φ iff

M(a) =](ε,δ) M(a′)

for every two adjacent inputs a and a′ (i.e. such that a Φ a′).
This fact forms the basis of previous lifting-based approaches for
differential privacy [2, 4, 5, 7].

A useful preliminary fact is that approximate liftings generalize
probabilistic liftings (which we will sometimes call exact liftings).

Proposition 4. Suppose we are given distributions µ1 ∈ SDistr(B1)
and µ2 ∈ SDistr(B2) and a relation Ψ ⊆ B1 × B2. Then,
µ1Ψ]µ2 if and only if µ1Ψ](0,0)µ2.

The previous results for exact liftings generalize smoothly to
approximate liftings. First, we can generalize Proposition 1.

Proposition 5 (Barthe and Olmedo [2]). Let E1 ⊆ B1, E2 ⊆ B2,
µ1 ∈ Distr(B1) and µ2 ∈ Distr(B2). Let

Ψ = {(x1, x2) ∈ B1 ×B2 | x1 ∈ E1 ⇒ x2 ∈ E2}.

If µ1Ψ](ε,δ)µ2, then

Pr
x1←µ1

[x1 ∈ E1] ≤ exp(ε) Pr
x2←µ2

[x2 ∈ E2] + δ.

We can use this proposition to generalize Proposition 2, which
provides a way to prove that two distributions µ1 and µ2 are equal—
equivalently, µ1 =] µ2. Generalizing this lifting from exact to

approximate yields the following pointwise characterization of
differential privacy, a staple technique of pen-and-paper proofs.

Proposition 6 (Differential privacy from pointwise lifting). A prob-
abilistic computation M : A → Distr(B) is (ε, δ)-differentially
private w.r.t. an adjacency relation Φ iff there exists (δb)b∈B ∈ R≥0

such that
∑
b∈B δb ≤ δ, andM(a) Ψ

](ε,δb)
b M(a′) for every b ∈ B

and every two adjacent inputs a and a′, where

Ψb = {(x1, x2) ∈ B ×B | x1 = b⇒ x2 = b}.

2.3 Probabilistic liftings for the Laplace mechanism
So far, we have seen general properties about approximate liftings
and differential privacy. Now, we turn to more specific liftings
relevant to typical distributions in differential privacy. In terms
of approximate liftings, we can state the privacy of the Laplace
mechanism in the following form.

Proposition 7. Let v1, v2 ∈ Z and k ∈ N s.t. |v1 − v2| ≤ k. Then
Lε(v1) =](k·ε,0) Lε(v2).

Proposition 7 is sufficiently general to capture most examples
from the literature, but not for the examples of this paper; informally,
applying Proposition 7 only allows us to prove privacy using the
standard composition theorems. To see how we might generalize the
principle, note that privacy from pointwise liftings (Proposition 6)
involves liftings of an asymmetric relation, rather than equality. This
suggests that it could be profitable to consider asymmetric liftings.
Indeed, we propose the following generalization of Proposition 7.

Proposition 8. Let v1, v2, k ∈ Z. Then

Lε(v1) Ψ](|k+v1−v2|·ε,0) Lε(v2),

where
Ψ = {(x1, x2) ∈ Z× Z | x1 + k = x2}.

Proposition 8 has several useful consequences. For instance,
when |v1 − v2| ≤ k we have Lε(v1) Ψ](2k·ε,0) Lε(v2) with

Ψ = {(x1, x2) ∈ Z× Z | x1 + k = x2}, (1)

following from Proposition 8 and the triangle inequality

|v1 − v2| ≤ k ⇒ |k + (v1 − v2)| ≤ k + k = 2k.

Informally, this instance of Proposition 8 shows that by “paying”
privacy cost ε, we can ensure that the samples are a certain distance
apart. This stands in contrast to Proposition 7, which ensures that
the samples are equal.

Another useful consequence is that adding identical noise to both
v1 and v2 incurs no privacy cost, and we can assume the difference
between the samples is the difference between v1 and v2.

Proposition 9. Let v1, v2 ∈ Z. ThenLε(v1) Ψ](0,0) Lε(v2), where

Ψ = {(x1, x2) ∈ Z× Z | x1 − x2 = v1 − v2}.

3. Formalization in a program logic
In this section we present a new program logic called apRHL+ for
reasoning about differential privacy of programs written in a core
programming language with samplings from the Laplace mechanism
and the one-sided Laplace Mechanism. Our program logic apRHL+

extends apRHL, a relational Hoare logic that has been used to verify
many examples of differentially private algorithms [4].

We will use a standard imperative language with a sampling
command for the Laplace distribution. We omit the grammar here.

The semantics of programs is standard [4, 14]. We first define
the set Mem of memories to contain all well-typed functions from
variables to values. Then, commands are interpreted as functions
from memories to distributions over memories.
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Assertions and judgments Assertions in the logic are first-order
formulae over generalized expressions. The latter are expressions
built from tagged variables x〈1〉 and x〈2〉, where the tag is used to
determine whether the interpretation of the variable is taken in the
first memory or in the second memory. For instance, x〈1〉 = x〈2〉+1
is the assertion which states that the interpretation of the variable x
in the first memory is equal to the interpretation of the variable x in
the second memory plus 1. More formally, assertions are interpreted
as predicates over pairs of memories. We let [[Φ]] denote the set of
memories (m1,m2) that satisfy Φ. The interpretation is standard
(besides the use of tagged variables) and is omitted. By abuse of
notation, we write e〈1〉 or e〈2〉, where e is a program expression, to
denote the generalized expression built according to e, but in which
all variables are tagged with a 〈1〉 or 〈2〉, respectively.

Judgments in both apRHL and apRHL+ are of the form

` c1 ∼〈ε,δ〉 c2 : Φ =⇒ Ψ

where c1 and c2 are statements, the precondition Φ and postcon-
dition Ψ are relational assertions, and ε and δ are non-negative
reals.Informally, a judgment of the above form is valid if the two
distributions produced by the executions of c1 and c2 on any two
initial memories satisfying the precondition Φ are related by the
(ε, δ)-lifting of the postcondition Ψ. Formally, the judgment

` c1 ∼〈ε,δ〉 c2 : Φ =⇒ Ψ

is valid iff for every two memories m1 and m2, such that
m1 [[Φ]] m2, we have

([[c1]]m1) [[Ψ]]](ε,δ) ([[c2]]m2).

Proof system We defer the presentation of the proof system of
apRHL to the extended version.

Figure 1 collects the new rules in apRHL+, which are all derived
from the new proof principles we saw in the previous section.
The first rule [FORALL-EQ] allows proving differential privacy
via pointwise privacy; this rule reflects Proposition 6.

The next pair of rules, [LAPGEN] and [LAPNULL], reflect the
liftings of the distributions of the Laplace mechanism presented in
Propositions 8 and 9 respectively. Note that we need a side-condition
on the free variables in [LAPNULL]—otherwise, the sample may
change e1 and e2.

4. Above Threshold algorithm
The Sparse Vector algorithm is the canonical example of a program
whose privacy proof goes beyond proofs of privacy primitives
and composition theorem. The core of the algorithm is the Above
Threshold algorithm. In this section, we prove that the latter (as
modeled by the program AboveT) is (ε, 0)-differentially private;
privacy for the full mechanism follows by sequential composition.

Informal proof By Proposition 6, it suffices to show that for every
integer i, the output of AboveT on two adjacent databases yields
two sub-distributions over Mem that are related by the (ε, 0)-lifting
of the interpretation of the assertion

r〈1〉 = i⇒ r〈2〉 = i.

The coupling proof goes as follows. We start by coupling the
samplings of the noisy thresholds so that T 〈1〉+ 1 = T 〈2〉; the cost
of this coupling is (ε/2, 0). For the first i − 1 queries, we couple
the samplings of the noisy query outputs using the rule [LAPNULL].
By 1-sensitivity of the queries and adjacency of the two databases,
we know evalQ(Q[j], d)〈2〉 − evalQ(Q[j], d)〈1〉 ≤ 1, so

S〈1〉 < T 〈1〉 ⇒ S〈2〉 < T 〈2〉.

Thus, if side 〈1〉 does not change the value of r, neither does side
〈2〉. In fact, we have the stronger invariant

r〈1〉 = |Q|+ 1⇒ r〈2〉 = |Q|+ 1∧ (r〈1〉 = |Q|+ 1∨ r〈1〉 < i),

where r = |Q| + 1 means that the loop has not exceeded the
threshold yet.

When we reach the ith iteration and i < |Q|+ 1, we couple the
samplings of S so that S〈1〉+ 1 = S〈2〉; the cost of this coupling
is (ε/2, 0). Because T 〈1〉 + 1 = T 〈2〉 and S〈1〉 + 1 = S〈2〉, we
enter the conditional in the second execution as soon as we enter the
conditional in the first execution. For the remaining iterations r > i,
it is easy to prove

r〈1〉 = i⇒ r〈2〉 = i.

Formal proof We prove the following apRHL+ judgment, which
entails (ε, 0)-differential privacy:

` AboveT ∼〈ε,0〉 AboveT : Φ =⇒ r〈1〉 = r〈2〉,

where Φ denotes the precondition

adj(d〈1〉, d〈2〉)
∧ t〈1〉 = t〈2〉
∧ Q〈1〉 = Q〈2〉
∧ ∀j. |evalQ(Q〈1〉[j], d〈1〉)− evalQ(Q〈2〉[j], d〈2〉)| ≤ 1.

The conjuncts of the precondition are straightforward: the first states
that the two databases are adjacent, the second and third state that
Q and t coincide in both runs, and the last states that all queries are
1-sensitive. By the rule [FORALL-EQ], it suffices to prove

` AboveT ∼〈ε,0〉 AboveT : Φ =⇒ (r〈1〉 = i)⇒ (r〈2〉 = i).

for every i ∈ Z.
We begin with the three initializations:

j ← 1;
r ← |Q|+ 1;
T $← Lε(t);

This command c0 computes a noisy version of the threshold t. We
use the rule [LAPGEN] with ε = ε/2, k = 1 and k′ = k, noticing
that t is the same value in both sides. This proves the judgment

` c0 ∼ε/2 c0 : Φ =⇒ T 〈1〉+ 1 = T 〈2〉.

Notice that the ε/2 we are paying here is not for the privacy of
the threshold—which is not private information!—but rather for
ensuring that the noisy thresholds are one apart in the two runs.

Next, we consider the main loop c1:

while j < |Q| do
S $← Lε/4(evalQ(Q[j], d));
if (T ≤ S ∧ r = |Q|+ 1) then r ← j;
j ← j + 1;

and prove the judgment

` c1 ∼ε/2 c1 : Φ∧T 〈1〉+1 = T 〈2〉 =⇒ (r〈1〉 = i)⇒ (r〈2〉 = i)

with the [WHILEEXT] rule.
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