
Differentially Private Integer Partitions and their Applications

Jeremiah Blocki
Microsoft Research

Abstract

Given a positive integer N ≥ 0 a partition of N is a non-increasing sequence of numbers x1 ≥
x2 . . . ≥ xN ≥ 0 such that x1 + . . . + xN = N . We say that two partitions x and y are neighbors if the
L1 distance between them is at most 1/2. Blocki et al. [BDB16] recently showed that there is a (ε, δ)-
differentially private algorithm which (whp) achieves L1 error O(

√
N/ε) and they used their algorithm

to publish password frequency data from a password dataset of 70 million Yahoo! users [Bon12]. Their
algorithm, which was based on an (approximate) instantiation of the exponential mechanism [MT07], is
computationally efficient in 1

ε
, log

(
1
δ

)
and N .

The applications of the mechanism of Blocki et al. [BDB16] are not limited to passwords. For
example, the degree distribution of a social network G is simply a partition of the integer 2 |E(G)|.
Thus, the mechanism of [BDB16] could be used to preserve differential privacy when releasing the degree
distribution. It is particularly important to understand the performance of the exponential mechanism
for integer partitions. We provide a pure ε-differentially instantiation of the exponential mechanism
whenever there is an a priori known upper bound on N . We also upper bound the mean squared error

of the exponential mechanism O
(√

N log2 N
ε2

)
. For comparison, the best known results, due to Hay et al.

[HLMJ09], achieved mean squared error O
(√

N log3 N
ε2

)
.

Additionally, we conjecture that the L1 error of the exponential mechanism scales with 1/
√
ε instead

of 1/ε. Empirical data from the RockYou password frequency dataset supports this conjecture. The
conjecture, if true, could lead to the development of several useful node-differentially private algorithms.

1 Introduction

A partition of a non-negative integer n ∈ N is an ordered list of n integers x1 ≥ x2 ≥ . . . ≥ xn ≥ 0
such that

∑n
i=1 xi = n. We use P (n) to denote the set of all partitions of the integer n. For example,

P (3) = {(1, 1, 1) , (2, 1, 0) , (3, 0, 0)}. We let P .
=
⋃∞
n=0 P (n) denote the set of all integer partitions. We say

that two partitions x ∈ P and y ∈ P are adjacent if ‖x−y‖1 =
∑∞
i=1 |xi − yi| ≤

1
2 — note that if x ∈ P (nx)

then we define xi = 0 for i > nx. A randomized algorithm A : P → P satisfies (ε, δ)-differential privacy if for
every pair of adjacent partitions x, y ∈ P and every subset S ⊆ P we have Pr[A(x) ∈ S] ≤ eε Pr[A(y) ∈ S]+δ.

Given an input dataset f ∈ P the exponential mechanism [MT07] Eε (f) simply outputs each possible

outcome f̃ ∈ P with probability proportional to exp
(
− ε·‖f−f̃‖12

)
. While there are infinitely many integer

partitions, Blocki et al. [BDB16] observed that this distribution is well defined1 The exponential mechanism
of McSherry and Talwar [MT07] is known to have many powerful applications, especially in regards to the
development of differentially private mechanisms in the non-interactive setting [BLR13]. Unfortunately, there
is no efficient sampling algorithm instantiating this mechanism in general. Indeed, there is powerful evidence
(e.g., [Ull13]) that no general-purpose instantiation of the exponential mechanism can be computationally
efficient. However, Blocki et al. [BDB16] recently showed that, for the restricted case of integer partitions,
there is an efficient algorithm that (approximately) samples from the exponential mechanism over the space
of all integer partitions. More precisely, their algorithm preserves (ε, δ)-differential privacy and runs in

1Intuitively, if f ∈ P (n) then any partition f ′ ∈ P (n+ d) has ‖f ′ − f‖ ≥ d. Hardy and Ramanujan [HR18] showed that

|P (n)| ∼ 1
4n
√
3

exp
(
π
√

2n
3

)
. Thus, the sum

∑
d=0 e

−dε |P (n+ d)| converges.
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polynomial time in N , 1/ε and log δ. They also showed that the expected L1 error of their mechanism was

upper bounded by O
(√

N
ε

)
.

1.1 Applications

A password frequency list is simply partition of f1+. . .+fN = N , the number of of user passwords. Password
frequency lists from empirical datasets have great value to security researchers who wish to understand the
nature of an underlying password distribution so that they can accurately estimate security risks or evaluate
various password defenses. For example, the sum λβ =

∑β
i=1 fi is an approximate upper bound on the

number of accounts that an untargeted adversary could compromise with β guesses per user. Despite their
usefulness an organization may understandably be wary of publishing password frequency lists for its own
users due to potential security and privacy risks. For example, Yahoo! allowed Bonneau [Bon12] to collect
anonymized password frequency data from a random sample of 70 million users and publish some aggregate
statistics such as min-entropy. However, Yahoo! declined to publish the original password frequency lists so
that other researchers could use them.

Recently, Yahoo! gave Blocki et al. permission to run their differentially private algorithm and place the
sanitized password frequency data in the public domain and made it freely available for download.2. This is
an excellent instance of differential privacy enabling (instead of hindering) research by alleviating potential
security and privacy concerns. The data has since been used to analyze password hashing algorithms [BD16].

While Blocki et al. focused on password frequency lists, the differentially private algorithm for releas-
ing integer partitions may also be useful in other settings. The degree distribution of a graph G with n
nodes and m edges is simply a partition of the number 2m. Previous differentially private research has
focused on releasing the degree distribution of G in both the edge-adjacency [HLMJ09] and vertex adjacency
models[KNRS13, RS15].

2 New Results

In this section we briefly overview (without proof) several new results and discuss their potential applications.

Pure-DP. Assume that we are given (a priori) an upper bound N̂ on the integer N . For example, if we
know that a social network G ∈ Gn has n nodes then we know that the social network has at most m ≤

(
n
2

)
edges and therefore the degree distribution is a partition of an integer N ≤ N̂ ≤ 2

(
n
2

)
. In this case it makes

sense to define the exponential mechanism Eε : P
(
≤ N̂

)
→ P

(
≤ N̂

)
over the restricted set of partitions

P
(
≤ N̂

)
. As it turns out there is a polynomial time algorithm (in N̂ , 1/ε) to (exactly) sample from this

distribution.
While the running time of this new algorithm is worse than the algorithm of Blocki et al. [BDB16], the

new algorithm preserves pure ε-differential privacy. Thus, the new algorithm can ensure significantly better
group privacy guarantees making it a useful tool for achieving node-level differential privacy3

Mean Squared Error. In their analysis of the exponential mechanism Blocki et al. [BDB16] focused on

upper bounding expected L1 error. Their upper bound O
(√

N/ε
)

on L1 error was incomparable to a result

of Hay et al. [HLMJ09], who presented an algorithm that achieves mean squared error O
(√

N log3N
ε2

)
. We

2https://figshare.com/articles/Yahoo_Password_Frequency_Corpus/2057937 main data file SHA-256 hash:
061137ea3cc129c7d9f501295cb194e0c6fa158acac702f893cba3cfd5f44efe

3One tempting way to achieve node differential privacy might be to set ε′ = ε/n and δ′ = δ/n and run a (ε′, δ′)-edge
differentially private algorithm. However, this algorithm would only guarantee

(
ε, δeεn/n

)
-node level differential privacy. This

example illustrates why it is desirable to have pure ε-differentially private implementation of the exponential mechanism for
integer partitions.
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Figure 1: RockYou Password Frequency Data N ≈ 3.26× 107. Average L1 error vs 1√
ε
. L1 error is averaged

over 100 independent samples.

can now upper bound the mean squared error of the exponential mechanism — O
(√

N log2N
ε2

)
. Thus, the

exponential mechanism also improves on L2 error.

Lower Bound. We can show that any differentially private algorithm for releasing integer partitions must

incur L1 error at least Ω
( √

N
logN

)
in the worst case. Thus, the exponential mechanism is nearly optimal.

3 An Open Question

Blocki et al. [BDB16] proved that if 1/ε = o(
√
N) then (whp) the L1 error of the exponential mechanism is

at most c
√
N/ε for some constant c. Conjecture 1 says that L1 error of the exponential mechanism actually

scales with 1√
ε

instead of 1
ε .

Conjecture 1 Let f ∈ P (N), ε > 48π2
√
N

and δ ≥ e1−
√
N/2 be given be given and let f̃ ← Eε (f) denote a

random sample from the exponential mechanism. Then except with probability δ we will have

‖f − f̃‖1 ≤
c1
√
N√
ε

+
c2 ln

(
1
δ

)
ε

,

where c1 and c2 are constants.

3.1 Empirical Evidence

Empirical results of Blocki et al. [BDB16] support Conjecture 1. In particular, Blocki et al. [BDB16] analyzed
the performance of the exponential mechanism on the RockYou password frequency dataset (N ≈ 3.26×107).
Figure 1 plots ‖f−f̃‖1 versus 1/

√
ε. Here, f represents the original RockYou frequency data (e.g., f1 ≈ 3×105

denotes the number of RockYou users who selected the most popular password ‘123456’) and f̃ ← Eε (f)
represents a sample from the exponential mechanism. Each point represents the average value ‖f− f̃‖1 taken
over 100 independent samples from the exponential mechanism. While the results from Figure 1 certainly
do not constitute a proof of Conjecture 1 they are highly suggestive.

3.2 Implications for Node Privacy in Social Networks

There are two variants of differential privacy for social networks: edge privacy and node privacy. Intuitively,
edge privacy protects each individual link (e.g., relationships), while the later protects an individual together
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with all of the edges incident to that individual (e.g., all of his/her relationships). Edge privacy, the weaker
notion, has been studied more extensively as it is often easier to obtain positive results in this setting
(e.g., [BBDS12, HLMJ09, NRS07, KRSY14, KS12]). However, the guarantee of edge privacy may not be a
sufficient privacy guarantee in many contexts4.

While node differential privacy provides much better privacy guarantees it is much harder to develop
differentially private algorithms that give accurate answers (e.g., even the simple query how many edges exist
in the graph has sensitivity O(n) because we can destroy n − 1 edges by deleting a single node). Recently,
Blocki et al., Kasiviswanathan et al. and Chen and Zhou al. [BBDS13, KNRS13, CZ13] began developing
techniques (e.g., lipshitz extensions) for building node differentially private algorithms which would give
accurate answers whenever the underling graph satisfied certain sparsity conditions. While this progress has
been exciting, these works considered only a very limited classes of queries like subgraph counting queries.
Raskhodnikova and Smith [RS15] recently explored the possibility of releasing the degree-distribution with
node-differential privacy. However, Raskhodnikova and Smith only promise accurate results when the graph
satisfies a stronger assumptions (e.g. α-decay).

If Conjecture 1 holds then we can promise accurate results under more general conditions — Theorem 1.
Notation: Let DegList(G) denote the degree distribution of a social network G ∈ Gn, the set of social
networks on n nodes. Let Gnd denote the set of all social networks on with maximum degree d, and let Gnd,k
denote the set of social networks G that are k-close to some social network G′ with maximum degree d —
formally G is k-close to Gnd if minG′∈Gn

d
‖DegList(G)−DegList(G′)‖1 ≤ m.

Theorem 1 Assuming that Conjecture 1 holds there is an efficient, in 1/ε, n, ε-differentially private algo-
rithm A such that for any graph G ∈ Gnd,k

E [‖f −A(f)‖1] = O

(
k +

√
md√
ε

)
.

Here, f ∈ P denotes the true degree distribution of G. In particular, if md = o(n2) then E [‖f −A(f)‖1] =
o(n).

Proof of Theorem 1. (sketch) [RS15] showed that there is a polynomial time computable ‘Lipshitz extension’
of the function DegList : Gn → Rn. Specifically, there is an efficiently computable function gd : Gn → Rn
with the following properties: (1) gd(G) = DegList(G) for all G ∈ Gnd , (2) for all node-adjacent social
networks G ∼ G′ we have ‖DegList(G)−DegList(G′)‖1 ≤ 3d, and (3) ‖DegList(G)− gd(G)− ‖1 ≤ O(k)
for all G ∈ Gnd,k. Thus, we simple output Eε/(3d)

(
gd
(
G
))

. The mechanism preserves ε-differential privacy
because the global sensitivity of gd is at most 3d (property 2). By Conjecture 1 we have

‖gd
(
G
)
− Eε/(3d)

(
gd
(
G
))
‖1 ≤ O

(√
dm√
ε
− ln δ

ε

)
,

except with probability δ. For G ∈ Gnd,k we can apply the triangle inequality and (3) to obtain

‖DegList(G)− Eε/(3d)
(
gd
(
G
))
‖1 ≤ O(k) +O

(√
dm√
ε
− ln δ

ε

)
.

�
4For example consider the problem of releasing statistics about the communication graph for a site like Ashley Madison,

where an adversary might have significant background knowledge about users due to the infamous data breach. While edge
privacy would not disclose the existence of particular relationship, it would not hide a user’s overall activity level.
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